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Abstract

The Hubble Space Telescope carries three Fine Guidance Sensors (FGS) that
serve as part of the Pointing Control System and can be used for millisecond of
arc astrometry on stars as faint as V=17.  The HST Ritchey-Chrétien design
produces optical distortions in the field of view of the telescope, which because
of residual misalignments, must be calibrated on-orbit for any instrument.
The method chosen to calibrate these distortions, as they are observed by the
FGS, involves exploiting the metric invariance of a rich star cluster with
respect to repointing the telescope; that is, the measured relative positions of
stars, after calibration, should not depend on where the telescope was pointed.
We report the analysis of an extensive series of measurements of the ecliptic
open cluster M35, for the purpose of determining distortion polynomial
coefficients and other parameters necessary to reduce HST astrometric
observations with Fine Guidance Sensor 3.  Implications for the accuracy of
HST astrometry are discussed.

I.  Introduction

The Hubble Space Telescope is a Cassegrain telescope of the Ritchey-Chrétien design.
The prescription of the Optical Telescope Assembly (OTA) contains optical field angle
distortion (OFAD) and some astigmatism.  Neither coma nor spherical aberration
was included in the optical design.  The Fine Guidance Sensors (FGS) are optical
interferometers that measure pointing changes by means of shearing the wavefront
with Koester's prisms.  (For details regarding the entire FGS design see Bradley et al.
1991.)  Before light strikes the HST focal plane it is diverted to an FGS by means of a
pick-off mirror.  Next in the optical path is an aspheric mirror that corrects for the
design astigmatism and almost totally collimates the beam.  Following the asphere is
a Star Selector composed of two fold flat mirrors and a five element corrector group
which rotate as one unit.  After the corrector group, the beam is totally collimated.
Also, the pupil is located beyond this point  (see Figure 1 in Bradley et al. 1991 for the
optical layout of the FGS).

The combined OTA/FGS design contains distortion and lateral color effects.
Distortion is a field dependent aberration that displaces the true star position but
does not degrade image quality.  The lateral color displaces the true star position as a
function of field location and color temperature of the target.  The design distortion
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within the FGS can impart pointing errors as large as 6 arc seconds. Lateral color
contributes about 5 mas (worst case) to positional error. Although the design
distortion is large, initial estimates for its signature are obtained through raytraces.
Hence a substantial amount of design distortion can be removed with pre-launch
estimates.  Also, the majority of the design distortion results in an effect that mimics
a change in the plate scale.  The nonlinear distortion is only about 0.5 arc seconds.

The classical telescope design and lateral color are not the only sources of distortion
that affect astrometric measurements.  Figure errors on optical surfaces that are not
near the pupil generate local wavefront tilts.  The FGS pick-off, aspheric and Star
Selector A fold mirrors are in this category.  Figure error in the optical elements that
are located beyond the five element corrector group of Star Selector A have no effect
on the data, since the beam is totally collimated at that point.  Misaligned Star
Selector mirrors and clocking offsets between the Star Selectors and their respective
encoders also contribute to distortion.  Encoder bit errors add both low and high
spatial frequency distortions to the target's location.  Finally, launch stress, moisture
desorption and misaligned optical elements will change the signature of design
distortion.  Astrometric data must be adjusted for these distortions.  Prior to launch
these contributors were identified and methods to remove their effects, via on-orbit
calibrations or subtraction maps, were devised.

Of course, it is well known that the HST OTA design was not realized (Burrows et al.,
1991).  Due to figure error, the primary mirror has approximately 0.4 waves rms of
spherical aberration at 633 nm wavelength.  The fact that the figure error is in the
primary mirror, and not in the secondary, means that spherical aberration was
introduced without the introduction of coma.  This is critically important to the
operation of the FGS since coma destroys the interference transfer function that is at
the heart of the FGS function whereas spherical aberration does not.  The spherical
aberration does have some detrimental effect on the FGS, however (Ftaclas et al.
1993).  This is because residual misalignments of the collimated beam on the Koester
prisms cause the spherically aberrated wave front to be sheared by the Koester
prism.  Since the derivative of spherical aberration is coma, this shearing effect in the
FGS mimics coma in the OTA.  Fortunately, the amount of coma that has been
introduced into the FGS by this mechanism is sufficiently small that it has not
destroyed the observability of the transfer functions.  But it has introduced an
additional source of positional distortions that can and must be calibrated along with
the OFAD.  This source of distortion appears to be constant for a given secondary
mirror position.  It has an amplitude of approximately 10 mas and slowly varies
across the FGS FOV.  For the purposes of the OFAD calibration, the two sources of
positional distortion, the optical design and the effect of a misaligned pupil combined
with spherical aberration, are inseparable and so they are considered as a single
distortion in our analysis.

Two additional sources of difficulty have been discovered since launch.  First, for
reasons that are not well understood at this time, the metrology of the FGS optical
system has not fully stabilized.  A post-launch period of change was expected since
the metering structures are made of graphite epoxy which shrinks in a non-uniform
way due to water desorption.  While the amount of change that is observed has
dramatically decreased since the first few months after launch, there remains a time
varying part of the distortions that are observed by the FGS.  We have had to
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generalize our model and our calibration tests to account for these time dependent
changes.  The second source of difficulty that has been encountered is what appears
to be short-term changes of the primary-to-secondary mirror despace that results in a
focus shift over the HST orbit.  The Wide Field and Planetary Camera, as well as the
FGSs, have observed this phenomenon.  It is hypothesized that the change in
secondary mirror despace (also known as breathing) is caused by thermal variations
during the 90 minute orbit, see Hasan and Burrows this volume.  In the astrometry
FGS it is predicted that changes in translation, roll and scale of the targets occur
during an orbit as a result of the focus change.  An effective observing strategy is to
revisit three check stars several times over an orbit, in addition to the program stars.
From the check star information an affine transformation can be computed that
corrects for the effects of breathing.   The negative aspect of this scenario is that it
reduces the number of program stars that one can observe over the orbit.

Although there are three FGS interferometers on-board HST, the large amount of
spacecraft time required to fully calibrate each unit led to the decision to designate
one FGS as the astrometer and then to fully calibrate only that unit.  An extensive
set of tests was undertaken and analyzed. These tests resulted in the decision to
choose FGS 3 as the astrometer (Benedict et al. 1992).  The remainder of this paper
deals with the calibration of FGS 3 exclusively.

II.  The Determination of OFAD

ii.i.  Overlapping plate method

Jefferys (1979) developed an overlapping plate method to determine the OFAD.  The
telescope would be pointed toward a rich field of stars, such as an open cluster,
extending over approximately 30 arc minutes containing many stars with
magnitudes ranging from 10 to 14.  Measuring a set of stars which appear in the FGS
field of view (colloquially known as a pickle because of its shape), we get an
observational plate.  Then we offset the telescope slightly, and do the measurement
again to get another plate.  These two plates contain several common stars, but the
common stars will appear in different positions of pickle.  If there were no distortion
effects, the relative star positions from the two plates would be the same.  In other
words, any positional differences must be caused by distortion due to the
measurements being made in different regions of the pickle.  By observing many
stars on many plates, we can find a model that best fits the data.

The criteria for choosing the total number of plates and the sizes of offsets are:

• the offsets should be large while including as many common stars as
possible,

• the calibration should use as few plates as possible, while keeping the
precision of the reduction at the desired level, since the observations are
quite time-consuming.

After many simulations, we chose a set of 19 pointings as the baseline, which
contains a central pointing, six small-offset pointings that are arranged in a hexagon
that is 120 arcsec from apex to apex across the center, six larger-offset pointings
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whose centers lie on the central radius of the pickle, and six rotated plates that are
centered on the central pointing and on each of the middle pair of larger-offset
pointings.  The rotated plates were rotated as much as the roll constraints on the
telescope would permit.  For the time that the calibration was run (10 January 1993
UT), the maximum permissible rolls were +30° and –25°.  Figure 1 shows the FGS
fields of view for the 19 pointings projected onto the calibration star field in M35.  The
one pickle that is concave up represents the pointing we use during the fall (when the
telescope has rolled through 180° due to solar array pointing constraint) to monitor
the OFAD.

Figure 1: The geometry of the HST OFAD calibration.  The positions of the stars used
in the calibration indicated.  The FGS field of view outlines are shown for the 19
successful orbits of the 10 January 1993 UT calibration run (concave down) as well as
for the spring (concave down) and fall (concave up) LTSTAB tests.

ii.ii.  The OFAD model

The statistical model for the OFAD can be expressed as:

(1)

where  is the observed position vector;  is the unknown parameter of star position
vector; Qp is an unknown quaternion for transforming the different plates to the

reference plate (Jefferys, 1987);  includes systematic corrections of the pick-off,
aspheric collimating, and upper and lower fold flat mirror figure errors, the velocity
aberration, the telescope guiding errors, the star selector encoder (SSE) parameters,
and the OFAD;  is the random error (assumed Gaussian).  Of the systematic
corrections, those due to the pick-off, aspheric collimating, and upper and lower fold
flat mirror figure errors, and the velocity aberration are known (in the case of the
mirror figure errors, from pre-launch calibrations) and can be corrected as a part of
the normal “pipelining” of the data.  The remaining corrections due to the unknown
(and possibly time dependent) SSE parameters, and the OFAD must be estimated

Qp
†ξ Qp x ∆x ε+ +=

x ξ
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from on-orbit data.  Finally, two sets of “nuisance” parameters must be estimated as
well.  These account for the pointing and guiding of the telescope during the
calibration observations (and, for that matter, during science observations).  All of
these facets of our OFAD model are detailed below.

ii.iii.  The catalogue position

When measuring the position of a star using the FGS, we must first transform its
equatorial coordinates a, d from an existing relatively low-accuracy (~20 mas) star

catalogue to the pickle coordinate frame .  Since FGS astrometry involves relative
measurements with respect to the V1 axis, we also need to choose a space orientation
αo, δo of the V1 axis and a roll angle θo around the V1 axis so that the desired star can
be found in the pickle.  There are several ways to do the coordinate transformation.
Here we use the quaternion method developed by Jefferys (1987), in order to
maintain consistency with the other parts of the data reduction.  We first rotate

coordinates from equatorial to the V1 axis frame :

(2)

where the quaternion Qes can be expressed as three consecutive rotations

(3)

and where Qes
† is the conjugate of Qes, and

(4)

The next step is to transform the coordinates from the V1 axis to the ith FGS frame

 that we are using:
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(5)

where the nominal values of the quaternion Qi, i =1,2,3 for the three FGSs are:

(6)

The first component of the quaternion is the “scalar” or “real” part and the other
three components comprise the “vector” or “imaginary” part.  That is,

with

As it will bear on our results concerning the relative positions of the stars that will be
discussed in Section 4, it should be stressed here that the values of αo, δo and θo
cannot be estimated from the FGS data to a level of accuracy that is any better than
the ground-based catalog that is used.  Positional astrometry with the HST/FGS
system is strictly relative, not absolute.

ii.iv.  The correction for velocity aberration

Due to the space motion of HST, the measured positions will suffer a substantial
amount of velocity aberration (about several arc seconds).  Murray (1983) gives the
relativistic vectorial expression for the aberration :
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(7)

where  is the Lorentz tensor:

(8)

with

where c is the speed of light, and  is the space velocity of HST in the pickle frame,

and v and β are the magnitudes of  and , respectively.

For relative measurements, the main effects of the aberration will cancel, and only
the differential aberration is significant at the order of ±20 mas.  Here the differential
aberration refers to the aberration difference between some reference axis (the
direction for which the absolute velocity aberration has been corrected) and the star
which we are measuring:

(9)

where  are the unaberrated coordinates,  are the aberrated ones,  is the
absolute aberration, and Qt is the quaternion which rotates the coordinates of the
aberrated reference axis to the unaberrated reference axis.  Thus the corrections
become,

(10)

To determine the Qt, we take the HST axis that was corrected for absolute velocity

aberration as our reference axis, , which by definition, suffers no differential
aberration.  Thus,

(11)

ii.v.  Pick-off and aspheric mirror figure error corrections

As with any optical surface, the as-built mirrors in the FGS are not perfect.
Misfigured surfaces which are not near the system pupil produce slope (pointing)
errors across the full aperture (see Figure 1 in Bradley et al. 1991 for the location of
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the pupil). The FGS pick-off and aspheric mirrors are the main contributors to this
type of distortion with an amplitude range of 2 to 5 mas.  To a lesser extent the Star
Selector A fold mirrors add to this effect.

Prior to FGS assembly, each mirror was tested interferometrically.  The wavefront
tilts, figure error, for individual subapertures were converted to object space
distortions.  By HST/FGS convention, object space refers to a celestial coordinate
system that is rotated, but not projected, to be fixed to any of the three FGSs.  The
distortions were fit to the OFAD polynomial (see Section ii.x for the form of the
polynomial). Much of the figure error was characterized by the polynomial.  However,
there existed locations in FGS FOV that contained high spatial frequencies in figure
error. Hence, the residual errors in the polynomial fit were larger at these positions.
In order to avoid this effect, the observed FGS data are corrected for the measured
errors in the pick-off and aspheric collimating mirrors as part of the normal
pipelining of the data.

ii.vi.  Encoder errors

The 21 bit optical encoders in the Star Selector Assemblies cause small oscillatory
errors in the reported positions due to the inevitable manufacturing imperfections in
the encoder masks.  These errors are repeatable and were characterized prior to
launch.  The 14 most significant bits contribute low frequency errors that are readily
absorbed by the OFAD calibration.  The errors that are associated with the 7 least
significant bits have higher frequencies and cannot be accommodated by the OFAD.
Consequently, a pre-launch calibration was used to generate a look-up table that is
used to remove the least significant bit errors during the processing of the data.

ii.vii.  Quaternions as plate constants

Using quaternions as plate constants, we can precisely transform a star vector from a

standard plate  to the measured plate  without introducing any approximations
(Jefferys, 1987):

(12)

where the quaternion Qp satisfies Qp
†Qp = 1.

ii.viii.  Spacecraft jitter and drift correction

The normal function of the two guiding FGSs is to hold the spacecraft pointing fixed
such that the guide star in the dominant FGS does not move and to hold the roll of
the spacecraft fixed such that the guide star in the sub-dominant FGS is free to move
only along the line that passes through it and the dominant guide star.  The details of
the operation of the Pointing Control System are given in Bradley et al. (1991).  For a
variety of reasons, the guiding of the telescope during the course of the observations
(≈30 minutes) is not perfect at the level of a millisecond of arc.  To remove any

ξ x

x Qp
†ξQp,=
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residual guiding errors we have implemented a de-jitter algorithm that measures
and corrects the instantaneous deviation of the spacecraft pointing from an arbitrary
but fixed reference frame.  The fixed reference frame is set by the guide star centroids
measured during the fine lock interval of the first observation in the plate.  For all the
other observations in the orbit, any change in the guide star centroids is interpreted
as due to vehicle jitter which is then removed from the astrometry star centroid.
Specifically, the de-jitter algorithm assumes that any motion of the dominant guide
star is due to pure spacecraft translation and that any motion of the sub-dominant
star along a direction perpendicular to the line between the guide stars (after
spacecraft translation is removed) is vehicle roll.

We have also observed drift of stars in the astrometry FGS relative to the guiding
FGSs.  This relative motion is thought to be due to a combination of the breathing
effect alluded to earlier and thermal effects associated with the FGSs.  The solution
to this problem is to include in the observation set a series of check stars that are
revisited throughout the observation set.  For the OFAD calibration, we included
three stars in each plate that we observed, in sequence, at the beginning and end of
the orbit as well as individually during the central part of the orbit.  For example
during the observation at the central pointing, the identification numbers, in our
numbering system, of the check stars were 862, 853, and 894.  Star 862 was observed
1st, 15th, and 30th; star 853 was observed 2nd, 9th, 20th, and 29th, and star 894 was
observed 3rd and 28th during the total plate of 30 observations.  We used a solid body
linear drift model (i.e. FGS 3 was assumed to move as a solid body with constant
velocity and no rotation relative to the two guiding FGS units) of the form

(13)

where j is the plate number, i is the star number within the jth plate, ti is the time of
the observation, and t1j is the time of the first observation in the jth plate.  Note that
if there is only one observation of a given star on a particular plate (i.e. the star is not
a check star) then the position of that star changes but it does not contribute any
information to the estimation of the drift.

ii.ix.  The correction to SSE

The correction, , due to incorrect initial values of the SSE parameters is:

(14)

From Figure 2, we see that the raw data of FGS observation are the measurements of
the rotation angles of the two star selectors θA, θB.  The Cartesian coordinates, in

object space, , are derived by using the initial parameter values which may not be
well determined.  To include any possible corrections for the SSE, we should first
convert the  back to θA, θB using the nominal values, then by letting the parameters

vary freely, convert them back to get .

The polar coordinates, ρ and φ, of  are given by:
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Figure 2: The coordinate system used in HST FGS observations.

(15)

and have a spherical trigonometrical relation with θA, θB (Fresneau, 1985):

(16)

with  and , where the nominal values of the

SSE parameters are: .

Now we transform the raw θA, θB back to  using the free parameters ρA, ρB, kA,
kB and M:
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(17)

with  and .  Converting  to

rectangular coordinates, we obtain :

(18)

ii.x.  The correction for OFAD

We may reasonably represent the OFAD correction by two low-order polynomials in
the pickle frame:

(19)

where aij, bij are a set of constant coefficients to be determined.  The actual functional
form of the polynomial used is somewhat different.  The largest distortion,
contributed by the classical design of the aligned powered elements in the OTA/FGS
system, has a well-known signature.  It is a simple 5th order polynomial that is a
function of the sine of the optical field angle, ρ (the radial component of Eq. 18):

. (20)
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ρ'cos ρA ρB ρA ρB 180° q–( )cossinsin+coscos=

ρ' psinsin ρB 180° q–( )sinsin=

ρ' pcossin ρB ρAsincos ρB ρA 180° q–( )coscossin–=

q θB kB+( ) θA kA+( )–= p φ' θA– kA–= ρ', φ'

xtrue

xtrue
ρ'
M
----- φ'cossin=

ytrue
ρ'
M
----- φ'sinsin=

∆xdist x y aij;,( ) xtrue x– aijx
iyj

j 0=

5

∑
i 0=

5

∑= =

∆ydist x y bij;,( ) ytrue y– bijx
iyj

j 0=

5

∑
i 0=

5

∑= =

∆dist ρtruesin ρsin– a ρsin( ) 3 b ρsin( ) 5+= =



W. Jefferys, et al.

364 Proceedings of the HST Calibration Workshop

(21)

Misaligned optical elements break the symmetry, add a DC bias, add distortion, and
require additional terms in the polynomial.  The equations that are actually used for
our modeling of the OFAD are:

(22)

where the coefficients aij, bij are the constants that are estimated.  From  Eq.(22), we
can see that the variables x and y are mixed together and both have their own
observation errors.  This is the errors-in-variables problem which has been discussed
by  Jefferys (1990).

ii.xi.  The constraints

There is insufficient information in the HST observations alone to permit the
adjustment of the full set of SSE parameters, M, ρA, ρB, and kB.  Without additional
information, the least-squares problem would be singular and the iteration procedure
would diverge.  So, we introduce an external source of scale information, such as a
ground-based catalog, and constrain the estimated scale to approximate the implicit
scale of the ground-based catalog.  Moreover, our a priori knowledge of the plate scale
is quite good (approximately one part in 1000) so that we can start the least-squares
estimation quite close to the best-fit solution.
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In addition to the above constraint, we still have to consider other constraints to
arrive at a unique result, due to the fact that we do not want the linear terms in the
distortion correction to introduce any additional translation, rotation or scale change.
To make this clear, we express our model explicitly in terms of plate constants:

(23)

The constant and linear terms in the distortion are mixed with a, b, c, d of the plate
constants.  So we apply the following gauge constraints:

(24)

to separate the distortion coefficients from the plate constants.  The ability to include
arbitrary equality constraints is a feature of the GaussFit program we used to
implement our algorithm (Jefferys et al. 1988).

Finally, since there is a linear relationship between θA, θB, kA, and kB, only one
clocking error, kA, is estimated.  The value of kB is constrained to be zero.

ii.xii.  The condition equations

Let l be the number of stars observed, n be the number of observations in each plate,
and m be the number of the plates.  The total number of unknowns involved in the
model is the sum of:  four quaternion components for each plate (4m), two drift
parameters for each plate (2m), a variable number (≈30) of distortion coefficients aij,
bij, the star-selector-deviation parameters ρA, ρB, kA, and two components of star
position for each star (2l).

The OFAD is solvable if the total number of the equations is larger than the number
of unknowns.  Let us roughly estimate these two numbers:  suppose we have m=20
plates, each of which contains n=30 observations.  The total number of equations is
2mn=1200.  Because of the overlapping plates, every star is observed on at least two
plates.  In fact, if a star were observed on only one plate it would not contribute any
information to the OFAD determination.  As designed, the calibration in M35
required the estimation of the positions of l=93 stars.  So the number of expected
unknowns was approximately 4m+2m+30+3+2l = 339 and the least squares problem
was well determined.

III.  The HST Observations

The OFAD calibration actually began in December 1990 with the first of a series of
mini-OFADs that were performed to improve the knowledge of the FGS-to-FGS
alignments as well as the observed distortions.  These calibrations were made to
support the general operation of the spacecraft and differed from the full-OFAD
calibration in that the positions of the stars were assumed to be known at the 10's of

aξ bη c+ + x ∆xdist x y aij;,( )– ∆x M ρA ρB kB,,,( )–=

bξ– aη d+ + y ∆ydist x y bij;,( )– ∆y M ρA ρB kB,,,( )–=

a00 b00 0 a10; b01 a01; b10 0,= = = = =
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milliseconds of arc level and were held fixed in the estimation.  This simplification
meant that the mini-OFAD calibrations required far less telescope time than the full-
OFAD (typically a few orbits as opposed to 20).   The mini-OFAD calibrations not only
succeeded in providing the information needed to accurately point to targets with the
small apertures in the other science instruments, but it also revealed time dependent
changes in the OFAD.  The observations were not of sufficient quality, nor were they
made often enough (6 to 12 months was typical of the time between mini-OFADs) to
fully resolve the nature of these changes but it appeared that the changes could be
modeled, to the accuracy of the data, by a time dependent change in ρA.

This discovery prompted us to begin a series of long-term stability tests (LTSTAB for
short) to monitor any changes in the OFAD.  The monitoring effort consists of periodic
visits (ideally once per month) to the M35 field used for the OFAD.  In fact, M35 was
chosen for the OFAD calibration because of the need to run the LTSTAB tests.  Since
M35 is in the ecliptic, the telescope does not gradually roll about this field throughout
the year as it does for a target off the ecliptic.  Instead, the telescope flips 180° when
M35 gets closest to the anti-solar point (to be precise, the telescope rolls 180° between
December 20 and December 28 with the bulk of the roll occurring on December 24).
This means that we can observe the calibration field at two fixed orientations; one in
the fall and one in the spring.  This maximizes our sensitivity to real changes in the
OFAD and minimizes our sensitivity to uncertainties in the OFAD that might appear
as changes if the telescope gradually rolled through the calibration field.  Each spring
the LTSTAB test consists of a single orbit of observations that repeat the central
pointing of the OFAD.  The fall LTSTAB tests also consist of a single orbit of
observations but are rolled approximately 180° about the central pointing of the
OFAD calibration.  These two pointings are highlighted by the heavy lines in Figure
1.  Two executions of the LTSTAB test were made before the OFAD calibration; on
December 2 and 14, and three were run after the OFAD calibration; on April 5, 18,
and 19.  We expect to continue the LTSTAB tests, at a rate of approximately once per
month, whenever M35 is observable.

The analysis presented in this report concerns only the 20 orbit OFAD calibration
executed on 10 January 1993.  The analysis of the OFAD plus LTSTAB data (what
has come to be called a grand-OFAD) is still in progress.  The preliminary conclusion
of that analysis is that the changes that are occurring in the OFAD are of sufficiently
low frequency that they can be modeled by changes in the SSE parameters.
Consequently, it is meaningful to establish a baseline OFAD calibration from the 10
January 1993 spacecraft run.  That is the purpose of this report.  Subsequent reports
by us will provide the means to model the time changing OFAD, for example by
osculating SSE parameters or by a time dependent model and coefficients for the SSE
parameters.  We do not expect to have to change the coefficients of the 5th order
OFAD polynomial.

The OFAD calibration itself occurred over 33 hours beginning on 10 January 1993.
The calibration test consisted of 20 orbits.  The central pointing was repeated on
orbits 2 and 20 to permit us to monitor the stability of the OFAD over this period.
The data from orbits 16 (one of the middle-sized large offsets at the nominal roll) and
20 were severely corrupted by problems with the spacecraft guiding.  Fortunately, the
de-jitter algorithm described in Sec. ii.viii completely recovered the data from orbit
16.  It may be possible to recover the data from orbit 20 but they have not been
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included in the analysis presented in this paper.  On the whole, the telescope guiding
was extremely good and a total of 525 observations (out of a possible 540) of 91 stars
(out of a possible 93) were usable.

IV.  Results from our Analysis of the OFAD Data

We have subjected the data from the 19 uncorrupted orbits from the OFAD
calibration run in January 1993 to the analysis described in Section 2.  We estimated
the relative positions of the stars, the SSE parameters M, ρA, ρB and kA, and the
OFAD coefficients aij and bij simultaneously.  Of course, in addition, the nuisance
parameters of the plate quaternions and the drift parameters were estimated for
each orbit.

The estimated values of the SSE parameters and the OFAD coefficients aij and bij are
given in Table 1 along with the formal variances, from the least squares estimation,
for each.  The nonlinear part of the OFAD distortions are shown in Figure 3.  Since
the OFAD calibration is insensitive to absolute scale, the variances of all scale-like
quantities, such as M and ρA, are inherently large.  The rms of the residuals from the
548 individual observations from the OFAD orbits are 2.3 mas along both the x and y
axes.  This corresponds to an RSS error in a single observation of 3.2 mas over the
entire field of view of the FGS.  This is very close to the pre-launch expectation of 2.7
mas.
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Figure 3: The nonlinear optical field angle distortions due to the HST optical telescope
assembly as it is convolved with FGS number 3.  The contours are labeled with the
amount of distortion, in arcseconds, in the x (a) and y (b) coordinates.

It has already been stated that, since there is no field of stars whose relative positions
are known to the level of accuracy required for the HST OFAD calibration, we have
had to estimate the star positions simultaneously.  This means that we have the first
catalog of relative star positions that are accurate to about 2 mas.  Of course, the
absolute positions of these stars are only known to the accuracy of the ground-based
catalog to which we have referenced the relative positions.  For this we used an
updated version of McNamara and Sekiguchi’s (1986) catalog.  Our catalog of 91 stars
in M35 is summarized in Table 2.  We have tabulated values for the absolute right
ascension, declination, and the V magnitude purely for reference and identification
purposes.  The new results being presented here are the relative coordinates x and h
which are given with their estimated variances which were derived from the
bootstrap analysis that is described in the next section.

V.  Bootstrap Analysis of Bias and Variance

v.i.  The definition of bias

The OFAD model Eq. (22) is nonlinear, and nonlinear least squares solutions may be
affected by bias.  Bias is defined as the difference between the true T and the
expectation of the estimated values R of parameters:
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(25)

The causes of bias may be due to:

• use of the normal assumption when noise is not normal,

• nonlinearities in the model,

• neglect of important systematic effects.

In many practical cases, it is impossible to make the same observations many times
to get the mean of solution E(R).   Furthermore, we don't know the true values (that's
what we want to estimate).  Therefore the usual least squares method cannot give a
bias estimation.

v.ii.  The bootstrap method

Efron’s bootstrap method can be used to estimate bias due to causes (1) and (2) (Efron
1982, Wang 1990).  The basic idea is as follows:

1. Estimate OFAD parameters  from the actual data by ordinary least squares
fitting.  Denote this reference solution as R.

2. Construct an observed-minus-calculated (O − C) residual bank from the R solution:

(26)

3. Resample a new set of “observational” data by randomly drawing r from the
residual bank with replacement:

(27)

so Y* is expected to have a bias with respect to the R solution.

4. Estimate the parameter θ again using the same OFAD model:

(28)

Denote the bootstrap solution  as B.

5. Repeating steps (3) and (4) with independent samples a large number of times N,
we get the sample mean E(B).  The estimate of the bias becomes:

(29)

From the basic bootstrap assumption , we equate Eq. (25) to Eq. (29), and
obtain the bias-corrected parameter:

Bias E R( ) T–=

θ̂

r O C–( ) y ŷ– Bias– e, with E e( )+ 0= = = =

Y∗ ŷ r+ y e', with E e'( )+ 0= = =

θ̂∗ θ̂ Bias e∗, with E e∗( )+ + 0= =

θ̂∗

Biasˆ E B( ) R–=

Biasˆ Bias≈
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. (30)

It follows that

(31)

This formula is the basis for our bootstrap analysis.

vii.iii.  Checking the assumptions

For practical applications, we use the sample mean and variance to approximate the
expectation and variance:

(32)

(33)

(34)

when

We may naturally raise the question: how can we determine N to fulfill our precision
of ?  From sampling theory, if a single sample gives the precision , then

K groups of total N samples give the precision:

(35)

So if we have sampled a group with k replications and get a precision of , and we

are asking a precision of, say, , the K (and so for N = kK) value can be
estimated by

(36)

T̂ R E B( ) R–( )–=

E T̂ T–( ) 2 σR
2 E R T–( ) 2 σR

2 E Bias( ) 2+≈<≈

E B( ) B≈
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Applying the above to our situation, we have only one OFAD trial R and we have
made 120 bootstrap replications B.

v.iv.  Variance as a function of position

The bootstrap method can also provide a method to estimate the variance  of the

parameter  over whole pickle.

1. To get the variance as a function of position, we generate 100 uniform grid points
within the pickle by using

(37)

2. Calculate residuals between the reference solution R and the kth bootstrap
solution Bk (k=1,2,...,N) for the ith (i=1,100) grid point:

(38)

3. Summing over N bootstrap replications, we estimate the bias and the variance for
the ith point:

(39)

. (40)

4. Applying the bootstrap assumption: , we obtain an estimate of the

variance  over all pickle points.  The contour maps for the reduction variance from

Eq. (40) over a uniform grid can tell us about which region is most suitable for
astrometry.  Figure 4 shows that the expected error introduced into a star position by
the derived OFAD will be less than 2 mas over almost the entire FGS field of view.

v.v.  Variance of estimated parameters

The formal variances that are calculated as part of the least squares estimation are
too large due to large correlations between the parameters.  This is a particular
problem with the star positions in the OFAD analysis.  Since the positions of all of the
stars depend in the same SSE parameters and OFAD coefficients they are all highly
correlated.  Consequently, we have calculated the variances of the estimated star
positions using the bootstrap method just described.  These variances are given in
Table 2.  We have performed similar calculations for the SSE parameters and found

σ̂R

θ̂

x

xi ρi' θj'; yicos ρi' θj'; isin 1 100, i', 1 5; j', 1 20.,= = = = =

rik ∆x xi Bk;( ) ∆x xi R;( )–=

Biasˆ
i

1
N
---- rik

k 1=

N

∑=

σ̂Bi
Varˆ

i
1
N
---- rik rik–( ) 2

k 1=

N

∑= =

σ̂Ri
σ̂Bi

≈

σ̂R
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that the variances that are calculated by the standard least squares method and the
bootstrap method agree quite well.

Figure 4: The expected error that will be introduced into a reduced FGS number 3
observation, due to the uncertainty in the OFAD polynomial, as calculated by a
bootstrap analysis.  Note that the root-sum-square contribution of the OFAD
uncertainty is less than two milliarcseconds over almost the entire field of view.

VI. Remaining Work and Conclusions

As has already been stated, the data LTSTAB orbits were not included in the analysis
described in this report.  That analysis is on-going and an interim report is being
released concurrently with this report.

Beyond the time dependence of the OFAD, the most significant unresolved issue
concerning the OFAD is that of a possible lateral color effect.  If there are significant
lateral color effects in the FGS then they should be separately calibrated and the
OFAD data re-analyzed to take these effects into account.  In fact, a lateral color
calibration was run on 23 December 1991.  However, so much time elapsed between
the execution of the lateral color and the OFAD calibrations that it has proven very
difficult to connect the two calibrations.  This analysis is still in progress.

The plate scale of the OTA/FGS system must be calibrated as well.  This can be done
in any of several different ways.  Two methods that have been suggested are by use of
stars that are part of the HIPPARCOS spacecraft catalog or by use of the motion of a
minor planet.  A calibration by the first method was begun in the spring of 1993 and
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should yield a value for the plate scale that is accurate to a few milliseconds of arc
over the FGS field of view.

Finally, the OFAD calibration that has been described here was made using the
F583W filter.  This filter is an essentially clear filter that has a pass band that is
about 2340Å wide and is centered on 5830Å.  FGS 3 has four other filters that can be
used.  They are a 2/3 pupil stop and red, yellow, and neutral density filters.  Precise
positional astrometry with any of these filters will require a cross filter calibration so
that the OFAD measured with the clear filter can be used with the other filters.

The Astrometry Science Team is supported by NASA Grant No. NAG5-1603.  The
authors warmly acknowledge the interactions we have had, over many years, with
Gary Welter, of Computer Sciences Corporation.  Dr. Welter has done an immense
amount of work on the operational calibration of the FGS and he has been an
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References

Benedict, G.F. et al. 1992, PASP 194, 958
Bradley, A., Abramowicz-Reed, A., Story, D., Benedict, G. & Jefferys, W. 1991, PASP

103, 317
Burrows, C.J. et al. 1991, ApJ 369, L21
Cudworth, K.M. 1971, AJ 76, 475
Efron, B. 1982, The Jackknife, the Bootstrap and Other Resampling Plans, SIAM,

Philadelphia
Fresneau, A. 1985, Hubble Space Telescope Fine Guidance Sensors Instrument

Handbook, The Space Telescope Science Institute, Baltimore
Ftaclas, C. et al. 1993, Ap. Opt. 32, 1696
Jefferys, W.H. 1979, AJ 84, 1775
Jefferys, W.H. 1987, AJ 93, 755
Jefferys, W.H. 1990, Biometrika 77, 597
Jefferys, W.H., Fitzpatrick, M.J. & McArthur, B.E. 1988, Celest. Mech. 41, 39
Lasker, B.M., Jenkner, H. & Russell, J.L. 1988, in IAU Symp. No. 133, Mapping the

Sky-Past Heritage and Future Directions, eds. S. Debarbat et al., Kluwer,
Dordrecht, p. 229.

McNamara, B. and Sekiguchi, K. 1986, AJ 91, 557
Murray, C.A. 1983, Vectorial Astrometry, Adam Hilger, Bristol, p. 21
Wang, Q. 1990, Statistical Analysis of OFAD of HST using Bootstrap Method, M.A.

Thesis, The University of Texas at Austin



W. Jefferys, et al.

374 Proceedings of the HST Calibration Workshop


